1,492 research outputs found

    Autonomic management of multiple non-functional concerns in behavioural skeletons

    Full text link
    We introduce and address the problem of concurrent autonomic management of different non-functional concerns in parallel applications build as a hierarchical composition of behavioural skeletons. We first define the problems arising when multiple concerns are dealt with by independent managers, then we propose a methodology supporting coordinated management, and finally we discuss how autonomic management of multiple concerns may be implemented in a typical use case. The paper concludes with an outline of the challenges involved in realizing the proposed methodology on distributed target architectures such as clusters and grids. Being based on the behavioural skeleton concept proposed in the CoreGRID GCM, it is anticipated that the methodology will be readily integrated into the current reference implementation of GCM based on Java ProActive and running on top of major grid middleware systems.Comment: 20 pages + cover pag

    Power Modelling for Heterogeneous Cloud-Edge Data Centers

    Get PDF
    Existing power modelling research focuses not on the method used for developing models but rather on the model itself. This paper aims to develop a method for deploying power models on emerging processors that will be used, for example, in cloud-edge data centers. Our research first develops a hardware counter selection method that appropriately selects counters most correlated to power on ARM and Intel processors. Then, we propose a two stage power model that works across multiple architectures. The key results are: (i) the automated hardware performance counter selection method achieves comparable selection to the manual selection methods reported in literature, and (ii) the two stage power model can predict dynamic power more accurately on both ARM and Intel processors when compared to classic power models.Comment: 10 pages,10 figures,conferenc

    Tutte's first colour-cycle conjecture

    Get PDF
    Includes bibliographical references.This thesis presents a proof of Conjecture I (see Section 35) of W. T. Tutte's paper "A contribution to the theory of chromatic polynomials''. It is believed that this conjecture has not previously been resolved. Sections 25 and 38 are original. The remainder of the thesis is a summary of the requisite graph theory and matroid theory. Most of the material in this summary is elementary. However, its inclusion makes the presentation self-contained

    Accelerating sequential programs using FastFlow and self-offloading

    Full text link
    FastFlow is a programming environment specifically targeting cache-coherent shared-memory multi-cores. FastFlow is implemented as a stack of C++ template libraries built on top of lock-free (fence-free) synchronization mechanisms. In this paper we present a further evolution of FastFlow enabling programmers to offload part of their workload on a dynamically created software accelerator running on unused CPUs. The offloaded function can be easily derived from pre-existing sequential code. We emphasize in particular the effective trade-off between human productivity and execution efficiency of the approach.Comment: 17 pages + cove

    Long-Term Variations in the Pixel-to-Pixel Variability of NOAA AVHRR SST Fields from 1982 to 2015

    Get PDF
    Sea surface temperature (SST) fields obtained from the series of space-borne five-channel Advanced Very High Resolution Radiometers (AVHRRs) provide the longest continuous time series of global SST available to date (1981–present). As a result, these data have been used for many studies and significant effort has been devoted to their careful calibration in an effort to provide a climate quality data record. However, little attention has been given to the local precision of the SST retrievals obtained from these instruments, which we refer to as the pixel-to-pixel (p2p) variability, a characteristic important in the ability to resolve structures such as ocean fronts characterized by small gradients in the SST field. In this study, the p2p variability is estimated for Level-2 SST fields obtained with the Pathfinder retrieval algorithm for AVHRRs on NOAA-07, 9, 11, 12 and 14-19. These estimates are stratified by year, season, day/night and along-scan/along-track. The overall variability ranges from 0.10 K to 0.21 K. For each satellite, the along-scan variability is between 10 and 20% smaller than the along-track variability (except for NOAA-16 nighttime for which it is approximately 30% smaller) and the summer and fall ss are between 10 and 15% smaller than the winter and spring ss. The differences between along-track and along-scan are attributed to the way in which the instrument has been calibrated. The seasonal differences result from the T4 - T5 term in the Pathfinder retrieval algorithm. This term is shown to be a major contributor to the p2p variability and it is shown that its impact could be substantially reduced without a deleterious effect on the overall p2p s of the resulting products by spatially averaging it as part of the retrieval process. The AVHRR/3s (NOAA-15 through 19) were found to be relatively stable with trends in the p2p variability of at most 0.015 K/decade

    CONTINUER : maintaining distributed DNN services during edge failures

    Get PDF
    Partitioning and deploying Deep Neural Networks (DNNs) across edge nodes may be used to meet performance objectives of applications. However, the failure of a single node may result in cascading failures that will adversely impact the delivery of the service and will result in failure to meet specific objectives. The impact of these failures needs to be minimised at runtime. Three techniques are explored in this paper, namely repartitioning, early-exit and skip-connection. When an edge node fails, the repartitioning technique will repartition and redeploy the DNN thus avoiding the failed nodes. The early exit technique makes provision for a request to exit (early)before the failed node. The skip connection technique dynamically routes the request by skipping the failed nodes. This paper will leverage trade-offs in accuracy, end-to-end latency and downtime for selecting the best technique given user-defined objectives(accuracy, latency and downtime thresholds) when an edge node fails. To this end, CONTINUER is developed. Two key activities of the framework are estimating the accuracy and latency when using the techniques for distributed DNNs and selecting the best technique. It is demonstrated on a lab-based experimental testbed that CONTINUER estimates accuracy and latency when using the techniques with no more than an average error of 0.28% and13.06%, respectively and selects the suitable technique with a low overhead of no more than 16.82 milliseconds and an accuracy of up to 99.86%.Postprin
    • …
    corecore